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Certain HIV-encoded proteins modify host-cell gene expression in
a manner that facilitates viral replication. These activities may
contribute to low-level viral replication in nonproliferating cells.
Through the use of oligonucleotide microarrays and high-through-
put Western blotting we demonstrate that one of these proteins,
gp120, induces the expression of cytokines, chemokines, kinases,
and transcription factors associated with antigen-specific T cell
activation in the absence of cellular proliferation. Examination of
transcriptional changes induced by gp120 in freshly isolated
peripheral blood mononuclear cells and monocyte-derived-
macrophages reveals a broad and complex transcriptional program
conducive to productive infection with HIV. Observations include
the induction of nuclear factor of activated T cells, components of
the RNA polymerase Il complex including TFIl D, proteins localized
to the plasma membrane, including several syntaxins, and mem-
bers of the Rho protein family, including Cdc 42. These observa-
tions provide evidence that envelope-mediated signaling contrib-
utes to the productive infection of HIV in suboptimally activated
T cells.

IV preferentially replicates in proliferating CD4" T cells

(1). However recent evidence suggests that, in vivo, resting
and suboptimally activated T cells may serve as targets for
low-level productive infection in the absence of cellular prolif-
eration (2-5). Infection in this manner may contribute to the
establishment and/or maintenance of persistent viral reservoirs
that currently prevent the eradication of virus. To productively
infect suboptimally activated CD4" T cells, HIV must overcome
post-entry barriers to replication (6-8).

DNA microarrays have been used to characterize the effect of
HIV on target cell transcription (9, 10); in one microarray-based
study, HI'V Nef was shown to diminish barriers to viral replica-
tion by mimicking antigen-specific T cell proliferation signals
(11, 12). It has been suggested that HIV gp120 also facilitates
replication in suboptimally activated cells (12-15). Gp120 trans-
duces near-simultaneous signals through CD4 (16), a component
of the T cell receptor complex, and CCRS, a chemokine receptor
(17-19). In vivo concentrations of gp120 (20, 21) fall within the
range required to induce signaling in vitro (17-19, 22). To
provide a more complete picture of the complex cascade of
signals induced by gp120, we treated freshly isolated peripheral
blood mononuclear cells (PBMCs) and monocyte-derived mac-
rophages (MDMs) with an envelope derived from a CCR5-using
virus and measured temporal changes in the levels of mRNA by
using Affymetrix (Santa Clara, CA) U95A oligonucleotide mi-
croarrays that include probes encompassing ~12,600 genes. In
addition, we used a high-throughput Western blot analysis that
allowed us to screen protein lysates with 800 monoclonal anti-
bodies. The gp120 used was derived from JR-FL, a CCR5-tropic
molecular clone obtained from a minimally passaged viral isolate
(23). We used concentrations of envelope near or below that
detected in the serum of infected patients (20).
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Materials and Methods

Cells and Reagents. PBMCs were obtained by apheresis from
normal volunteers followed by ficoll-hypaque isolation. Cells
were resuspended in RPMI medium 1640/10% FBS. Donor
PBMC:s carrying one or two CCRS A32 alleles were not used.
MDMs were derived from elutriated monocytes cultured for 10
days in RPMI medium 1640/10%FBS/10% pooled human AB
serum supplemented with granulocyte/macrophage colony-
stimulating factor (GM-CSF; 10 units/ml). Gp120 was expressed
and purified as described (17, 24). Briefly, a Chinese hamster
ovary (CHO) cell line expressing a recombinant gp120 derived
from the HIV molecular clone JR-FL (23) was cultured in
hollow-fiber cartridges (Fibercell Systems, Frederick, MD). Pro-
tein was purified in three steps, employing metal-chelating,
lectin, and size-exclusion chromatography. Protein concentra-
tions were determined by absorbance at wavelength 280 nano-
meters. Protein was visualized by silver-stain and determined to
be greater than 97% pure and endotoxin-free (LAL assay;
BioWhittaker, Walkersville, MD). A mock protein prepared in
an identical manner was derived from untransfected CHO cells
and used as a mock.

gp120 Treatment of PBMCs and MDMs. Freshly isolated PBMCs and
MDMs (1-5 X 107) per time point were incubated in 10%
FBS/RPMI medium 1640 at 37°C during a time course ranging
from 1 to 16 h at a concentration of 50 ng per 10° cells of gp120.
Parallel cultures were treated with a mock protein preparation.

cRNA Preparation for Oligonucleotide Arrays. Total RNA from
~1-5 X 107 stimulated or unstimulated cells per time point was
extracted using the TRIZOL method (Life Technologies, Fred-
erick, MD). Briefly, cell pellets containing 1 X 107 cells were
lysed in 1 ml of TRIZOL and homogenized using a 1-ml syringe
and a 19-gauge needle. Samples were layered with 200 ul of
chloroform, inverted 15 times, and incubated on ice for 15 min.
Lysates were centrifuged at 4°C for 15 min at 14,000 rpm and the
aqueous phase transferred to a clean tube. RNA was precipitated
with equal volumes of isopropanol for 15 min at room temper-
ature. Precipitates were spun for 30 min at 4°C and 14,000 rpm.
Pellets were washed twice with 70% cold EtOH, and dried at
room temperature. RNA was resuspended in 50 ul of diethyl
pyrocarbonate (DEPC) water, quantitated, and analyzed by
denaturing gel electrophoresis to check purity. A total of 15 ug
of RNA was used for microarray analysis. First- and second-
strand DNA synthesis reactions were performed using the

Abbreviations: PBMCs, peripheral blood mononuclear cells; MDMs, monocyte-derived
macrophages.
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Induction of genes in response to gp120 treatment. A list of genes, which were determined by sam to be significantly modulated in response to JR-FL

gp120, was generated. A subset of that list that includes those genes most up-regulated is listed by time point for PBMCs (a) and MDMs (b). Responses were also
evaluated by samindependent of time, and a subset of those genes that were most up-regulated is reported in the list termed ““all time points.”” Accession number
and definition are included for each gene. avg FC, the fold change relative to PBMCs or MDMs treated with a mock protein preparation. Genes are ranked by
descending fold change. Results represent the average of four donors in PBMCs or three donors in MDM:s.

Table 1. JR-FL gp120-induced expression of genes previously
associated with HIV

Induced gene

Cell type

GenBank
accession no.

Ref. and/or
PubMed ID no.

Naf-1
RANTES
MIP-1a
MIP-18
NFATc

IL8

MGSA (Gro-a)
IL10

IL1B
TAFII-28
c-jun
c-myc
JKN2

RNA polymerase Il
LcK

STAT2
IFN-y
TGFB

vav

p53
sCD44
70Kd HSP1
NFkB

PBMC, MDM
PBMC, MDM
PBMC
PBMC
PBMC, MDM
PBMC, MDM
PBMC
PBMC
PBMC
PBMC
PBMC
PBMC, MDM
MDM
MDM
MDM
PBMC
MDM
PBMC
PBMC
MDM
PBMC
MDM
MDM

AJ011896
M21121
D90144
J04130
uo8015
M28130
X54489
U16720
M15330
X83928
Jo4111
V00568
U09759
L37127
M36881
U18671
L07633
X02812
X16316
X02469
U94902
M11717
M58603

11,12

35

35

35

11, 28, 29

33

34

26

26

11

10027715
11208609
9045910, 9403476
11

8887682, 7953537
15

26

26

10394361, 9582304
11313714
8345206

11, 11727548

15, 1380488

Genes determined by sam analysis to be induced by JR-FL gp120 that have
previously been reported to be modulated by HIV infection and/or gp120
signaling are listed along with the associated GenBank accession no. and

literature citation.
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Superscript Choice System (Life Technologies) followed by in
vitro transcription (Enzo Diagnostics) using biotin-labeled
dNTPs. The resulting biotin-labeled cRNA was quantitated and

Table 2. Incidence of descriptive categories associated with

genes modulated by gp120

Descriptive term

P value

Cytokine

Growth factor

Ligand

Inhibitor or repressor
Chemokine

Response to bacteria

Cell motility

Antiviral response protein
Response to biotic stimulus
Chemotaxis

Stress response

Cell migration/motility
Defense response

Viral replication

Cell proliferation

8.6E-06
3.1E-05
1.6E-04
2.7E-04
3.5E-04
4.0E-04
5.3E-04
1.3E-03
1.3E-03
1.4E-03

1.8E-03
4.3E-03
9.0E-03
9.7E-03
2.3E-02

A sam-derived list of genes modulated in both PBMCs and MDMs by gp120
was analyzed for significant association with descriptive categories that dis-
tinguish this list from the rest of the genes represented on the GENECHIP.
Descriptive categories were derived from Gene Ontology and Proteome At-
A-Glance classification systems. Descriptive categories that were significantly
over-represented in the list that includes all of the genes modulated by HIV
envelope at all time points, were ranked by P value (one-tailed Fisher Exact
test). Shown are the top ten over-represented terms and five other highly
represented terms relevant to the theme of viral replication.
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Table 3. Cytokines and chemokines induced by JR-FL gp120 in PBMCs and MDMs

Accession no. Cell type HIV replication Ref./PubMed ID no.
Cytokine

IL1B M15330 PBMC 1 1 26
IL3 M20137 PBMC 1 1 26
IL6 X04430 MDM 1 1 26
IL10 U16720 PBMC 1 [ 26
IL13 precursor U31120 MDM 1 | 26
IL15 precursor AF031167 MDM 1 PBMC | 1 9533656
IFN B 2A X04430 MDM 1 PBMC 1 | 26
IFN y L07633 MDM 1 1Tl 26
INF w 1 X58822 MDM 1

TNF « X02910 MDM 1 PBMC 1 1 26
VEGF X58822 PBMC 1

VEGF B precursor U48801 PBMC |

LIF (IL6 family) X13967 MDM 1 PBMC |, 1 8207643

Chemokine

GRO-a X54489 PBMC 1 1 34
GRO-y M36821 PBMC 1}

NAP2 M54995 MDM |

IL8 M28130 MDM 1 PBMC 1 1 33
IP-10 X02530 PBMC |

MIP-18 104130 PBMC 1 [ 35
MIP-1«a D90144 PBMC 1 T 35
RANTES M21121 MDM 1 PBMC 1 T 35
MIP-3«a u64197 PBMC 1

Cytokines and chemokines that were differentially expressed in either PBMCs and/or MDMs at any individual
time point as determined by sam analysis are listed along with their GenBank accession no. The cell type in which
differential expression was detected is listed. Increased mRNA expression is denoted by 1, and decreased mRNA

expression by | . Effect on viral replication, based on published; literature is also listed by arrows.

analyzed for purity on a 2% agarose Tris acetate EDTA (TAE)
gel. cRNA samples were then fragmented and prepared
for hybridization to Affymetrix Human Genome U95A oligo-
nucleotide arrays according to protocols specified by the
manufacturer.

Western Blot Analysis. Immunoblot analysis of proteins was
carried out as described (www.translab.com/shtml). Briefly,
PBMCs were treated with gpl120 as described above and
proteins were lysed in 10 mM Tris (pH 7.4)/1 mM
Na+orthovanadate/1% SDS followed by sonication and clari-
fied by centrifugation. Gels used were 16 X 16 cm, 5-15%
gradient SDS-polyacrylamide, 1-mm-thick. A gradient system
was used so a wide size range of proteins could be detected on
one gel. Four hundred micrograms of protein was loaded in long
well across the entire width of the gel. This translates into ~15
g per lane on a standard 25-well gel. The gel was then run at
constant milliamps. Subsequently the gel was transferred to
Immobilon-P membrane (Millipore, Bedford, MA) overnight at
200 mA. After transfer, membranes were blocked for 1 hwith 5%
milk. Subsequently, the membrane was inserted into a Western
blotting manifold that isolates 45 channels across the membrane.
In each channel, different complex antibody cocktails were
added and allowed to hybridize for 1 h. Following staining, the
membranes were washed and hybridized for 30 min with sec-
ondary goat anti-mouse horseradish peroxidase (HRP). All
antibodies were mouse monoclonal. Membranes were washed
and developed with SuperSignal West Pico (Pierce).

Statistical Determination of Significant Differential Expression. A
Significant Analysis of Microarrays (SAM; ref. 25) algorithm
was used to determine significant differential expression after
extensive prefiltering of genes. The prefilter was established as
follows. The expression value, termed average difference (Avg.
Diff.), was derived using the Affymetrix software program

9382 | www.pnas.org/cgi/doi/10.1073/pnas.142287999

MAS 4.0. The Avg. Diff. of genes <10 were truncated to 10. The
difference between mean Avg. Diff. between comparison
groups was set at >30. Mean Avg. Diff. between comparison
groups was set at >1.4-fold or <—1.4-fold, and the significant
difference of a Student’s ¢ test between the comparison group
was set at P < 0.1. Only those genes that generated lists from
SAM after 5,000 randomizations and with a 90% median false
discovery rate equal to zero were defined as differentially
expressed.

Results

Six Hundred Genes Modulated by HIV-1 Envelope in PBMCs and MDMs.
Fresh PBMCs (four donors) were treated with gp120 for 1, 5 and
16 h, whereas MDMs (three donors) were treated for 3, 6, and
10 h. In PBMCs, >9,000 genes were expressed of the ~12,600
genes represented on the microarray whereas in MDMs, >8,900
genes were expressed. To identify genes that were modulated in
a significant manner, we used a recently developed statistical
method termed saM (25). This method was designed specifically
to analyze large numbers of biological responses (=10,000)
typical of microarray data. Using SAM we identified ~600 genes
(=300 for PBMCs and ~300 for MDMs) that were significantly
modulated in response to envelope treatment. From that list we
extracted subsets of genes that were up-regulated to the greatest
degree (Fig. 1 a and b). We report these responses at each of the
time points analyzed (1, 5, and 16 h for PBMCs; 3, 6, and 10 h
for MDMs). Because individual donors may modulate a given
gene at different time points, we also identified genes that were
significantly modulated irrespective of the time of the response
(Fig. 1 a and b; all time points). Although many of the genes we
identified are of unknown function or have never been associ-
ated with HIV, our analysis identified at least 23 genes that have
previously been associated with HIV replication and/or enve-
lope signaling (Table 1). This finding indicates that the system
and strategy that we used was sufficiently sensitive and reliable

Cicala et al.
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to identify relevant responses. We chose to focus our current
analysis on genes likely to influence viral replication.

The Term Cytokine Ranked Highest Among Descriptive Categories
Modulated by gp120. To assess the potential of the ~600 differ-
entially expressed genes to influence the replication of HIV, we
used a newly developed literature-mining algorithm (D.A.H. and
R.A.L., unpublished work). This algorithm utilizes a set of
descriptive categories that includes all of the descriptive terms in
the Gene Ontology and Proteome At-A-Glance classification
systems found in the Locus-Link reports (National Center for
Biotechnology Information, www.ncbi.nlm.nih.gov/locuslink).
We identified descriptive categories of genes that were over-
represented in our list of differentially expressed genes, relative
to all 8,443 annotated genes represented on the U95A microar-
ray. In this manner, we generated an index with corresponding

Cicala et al.

results are displayed.

significance values. Envelope-induced genes encompassed 353
descriptive categories and among those categories the term
cytokine achieved the highest degree of significance and was
among the most frequently associated with gp120-modulated
genes (Table 2). HIV replication is strongly influenced by
cytokines in vivo (1), and thus this result is highly consistent with
the hypothesis that envelope-mediated cell signaling plays a role
in viral replication. Other relevant terms, including cell prolif-
eration and viral replication, also occurred with a high degree of
significance (Table 2).

We observed increased transcription of twelve cytokine
messages (Table 3). TNF-«, IL1-B, and IL3 all enhance HIV
replication (26) and all were up-regulated in PBMCs. In
MDMs, four cytokines that enhance HIV replication, TNF-q,
IL6, IL15, and IFN-vy, were up-regulated. Only two cytokines
that suppress viral replication, IL13 and IFN-8, were induced.
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T-Score Cytokine/Chemokine

AJ001634 MCP-4

AF031167 INTERLEUKIN 15

M16441 LYMPHOTOXIN ALPHA

X13967 LEUKEMIA INHIBITORY FACTOR
U31120 INTERLEUKIN 13

U37518 TRAIL

X02530 IP-10

AF064090 TNF SUPERFAMILY 14

X06374 PDGF-1

ug1234 GCP-2

AB000584 MACROPHAGE INHIBITORY CYTOKINE
M28225 MCP-1

M22488 BONE MORPHOGENETIC PROTEIN 1
U16720 INTERLEUKIN 10

X82540 INHIBIN, BETAC

L09753 CD30 LIGAND

U02020 PRE-B-CELL COLONY-ENHANCING FACTOR
X04571 EPIDERMAL GROWTH FACTOR
X03563 INSULIN-LIKE GROWTH FACTOR 1
X58822 INTERFERON, OMEGA 1

M21121 RANTES

M20137 INTERLEUKIN 3

X02812 TGF BETA

X04430 INTERLEUKIN 6

M60278 HEPARIN-BINDING EGF-LIKE FACTOR
J04130 MIP-1 BETA

M15330 INTERLEUKIN 1, BETA

D90144 MIP-1 ALPHA

u64197 MIP-3 ALPHA

X02910 TNF ALPHA

M36821 GRO3 ONCOGENE

M28130 INTERLEUKIN 8

AF024710 VEGF

X54489 GRO1 ONCOGENE

Time(hrs) 3 6 10 1 5 16 EE——
M&  PBMC 25 0 25

Fig. 3. Hierarchical cluster analysis of the genes included in the category
""Cytokine/Chemokine’ that are induced by gp120. Genesincluded in this that
were significantly differentially expressed in macrophages (three donors; M)
or PBMCs (four donors) following treatment with gp120 were clustered
(spOTFIRE software package, Spotfire Inc., Somerville, MA; hierarchical algo-
rithm) according to t score values derived after performing 5,000 random
permutations of the expression data by using a paired test comparing treated
versus untreated samples (sam software package). Changesin gene expression
relative to untreated PBMCs and MDM: s are indicated by a color scale in which
the color red indicates up-regulation of transcription and green indicates
down-regulation. Changes in gene expression for three different time points
in both MDMs and PBMCs are represented.

This pattern of cytokine induction, although complex, favors
viral replication.

Increased Expression of the Transcription Factor NFAT (Nuclear Factor
of Activated T Cells). An increase in NFATc message was observed
in both PBMCs and MDMs (Table 1). In addition, Western blot
analysis demonstrated that gp120 induced a pronounced in-
crease in NFAT-1 protein expression (Fig. 2). The NFAT family
of transcription factors plays a central role in the transcriptional
regulation of inflammatory cytokines and other genes central to
immune responses (27). Two NFAT recognition elements reside
in the HIV long terminal repeat (LTR) (28), and both NFAT-1
and NFATc induce the replication of HIV in primary cells
(28-30). Furthermore, NFATc promotes the productive infec-
tion of HIV in the absence of CD4" T cell proliferation (29).
This occurs as a consequence of two activities: NFAT facilitates
reverse-transcription of the HIV genome (29), and it strongly
induces transcription from the HIV LTR (28). Because NFAT
acts both directly on the HIV transcription and indirectly
through increased cytokine expression, we regard its induction as
particularly significant to HIV replication. Although this is the
first report of gp120 inducing NFAT expression, it has previously
been shown that NEF induces NFATc transcription (11). Inter-
estingly, the « subunit of protein phosphatase 2A (PP2A), which
activates NFAT (31), was also up-regulated (Fig. 2).

Relevant Transcription Factors and Kinases Induced by HIV-1 Envelope.

Other transcription factors and protein kinases, including c-jun,
JNK, MEK, p38 MAPK, STAT, and JAK, all of which partici-
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pate in antigen-specific T cell activation (14, 15, 32), were
induced (Figs. 1 and 2, Table 1). We observed increased
transcription of two components of the transcription-elongation
factor complex, TFII H and TFII D (Fig. 1, Table 1). We also
observed a large increase in the transcription of RNA polymer-
ase II (Fig. 1, Table 1). In addition to NFATc, NEF also induces
RNA polymerase II, TFII D, and a third component of the
transcription-elongation complex, CDK9 (11). Because enve-
lope-mediated signaling occurs at a very early step in HIV
infection of target cells, and NEF is among the first proteins
expressed, we suggest that gp120 and NEF may act synergistically
in driving transcription from the HIV LTR in suboptimally
activated cells.

gp120 Induced Five Chemokines and Modulates Chemokine-Related
Signal Transduction. Five chemokines, IL8, GRO-a, GRO-v,
MIP1la, MIP1B, and RANTES, were up-regulated in response to
gp120 (Figs. 1 and Fig. 3, Tables 1 and 3). IL8 and GRO-«
enhance HIV replication (33, 34). GRO-vy is closely related to
GRO-a and is also likely to enhance viral replication. Although
MIP1a, MIP-18, and RANTES are generally viewed as inhibi-
tory chemokines, they only block entry of RS viruses at very high
concentrations (35). It is of note these same chemokines enhance
viral replication at postentry steps of the viral life cycle (35-37).
A common paradigm in gene expression analysis holds that genes
that are regulated similarly function in a coordinated manner
(38). In this regard, cluster analysis of genes included in the
descriptive category “cytokine/chemokine” illustrate the simul-
taneous induction of Gro-a, IL-8, MIP-1«, and MIP1-B, which
are all up-regulated within 5 h of treatment with envelope
(Fig. 3).

Intracellular factors related to chemokine signaling and cell
trafficking were also induced. We observed a marked increase in
the expression of both RhoGDI and Cdc42, and an apparent
modification of Rho (Fig. 2). Rho and Cdc42 are members of the
Rho family of small guanine nucleotide-binding proteins that
participate in lymphocyte trafficking by controlling the forma-
tion of focal adhesion complexes (39). We and others have
previously demonstrated that gp120 induces the phosphorylation
of FAK (40) and Pyk-2 (18), two components of focal adhesion
complexes. We suggest that gp120-mediated induction of che-
mokines has a net effect that favors viral replication directly
through the stimulation of target cells and indirectly through the
recruitment of target cells to sites of active viral replication.

gp120-Mediated Modulation of a Group of Genes Involved in Mem-
brane Fusion. Several genes associated with membrane fusion
were induced by gp120. We found the increased expression of
syntaxin-4 by gp120 within the first hour after treatment to be
intriguing (Fig. 2). Induction of other syntaxin family members
was observed at the level of mRNA. Syntaxin-7 was induced in
PBMCs, whereas syntaxins 6 and 11 were induced in MDMs
(data not shown). Syntaxins are members of a family of integral
membrane proteins referred to as SNARESs (41). These proteins
mediate membrane fusion in a compartment-specific manner.
They play a central role in the fusion of intracellular vesicles with
the plasma membrane (41). It has been suggested that syntaxins
participate in the controlled exocytosis of cytokines from intra-
cellular vesicles on T cell activation (42), a process consistent
with gp120-induced cytokine and chemokine secretion. Of note,
syntaxin-mediated membrane fusion is mechanistically similar to
HIV-envelope-mediated fusion (43). Finally we note the induc-
tion of flotillin-1 (Fig. 2), a protein that is enriched in lipid rafts
(44), which are membrane structures that facilitate fusion of
HIV with plasma membranes of target cells (45).
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Discussion

HIV-1 pathogenesis is regulated by a complex interaction be-
tween viral and cellular factors. A better understanding of these
complex interactions will aid in the development of new classes
of therapeutic agents designed to inhibit HI'V-1 replication. We
have demonstrated that CCR5-specific HIV gp120 induces the
transcription and expression of factors that provide a conducive
environment for HIV replication in resting or suboptimally
activated PBMCs.

We used high-density oligonucleotide microarrays and high-
throughput Western blotting to characterize the complex re-
sponse of PBMCs and MDMs to gp120-mediated signaling. By
microarray analysis, ~300 genes were reproducibly modulated in
both PBMCs and MDMs. This represents ~3% of the total
number of expressed messages detected by the Affymetrix U9SA
chip in our system. Changes in the expression of these genes may
reflect both direct and indirect responses to envelope signaling.
Presently we cannot distinguish between CD4-mediated versus
CCR5-mediated signals.

The rapid induction of cytokines and chemokines at early time
points is likely to initiate a cascade of responses. Using a literature-
mining algorithm, we found genes related to cytokines and che-
mokines among the most highly represented groups of genes
responding to gp120, an observation that underscores the potential
impact that envelope-mediated signaling can impose on the tran-
scriptional and translational programs of the human immune
system. HIV replication in vivo is controlled by cytokines and
chemokines, and the majority of those induced by gp120 enhance
viral replication. In addition, gp120-induced dysregulation of cyto-
kines and chemokines may contribute to immune dysfunction and
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